Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 309
Filter
1.
Anal Chem ; 96(15): 5992-6000, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38574346

ABSTRACT

Hypochlorous acid (HClO) is a typical endogenous ROS produced mainly in mitochondria, and it has strong oxidative properties. Abnormal HClO levels lead to mitochondrial dysfunction, strongly associated with various diseases. It has been shown that HClO shows traces of overexpression in cells of both ferroptosis and hepatocellular carcinoma (HCC). Therefore, visualization of HClO levels during ferroptosis of HCC is important to explore its physiological and pathological roles. So far, there has been no report on the visualization of HClO in ferroptosis of HCC. Thus, we present a ratiometric near-infrared (NIR) fluorescent probe Mito-Rh-S which visualized for the first time the fluctuation of HClO in mitochondria during ferroptosis of HCC. Mito-Rh-S has an ultrafast response rate (2 s) and large emission shift (115 nm). Mito-Rh-S was constructed based on the PET sensing mechanism and thus has a high signal-to-noise ratio. The cell experiments of Mito-Rh-S demonstrated that Fe2+- and erastin-induced ferroptosis in HepG2 cells resulted in elevated levels of mitochondrial HClO and that high concentration levels of Fe2+ and erastin cause severe mitochondrial damage and oxidative stress and had the potential to kill HepG2 cells. By regulating the erastin concentration, erastin induction time, and treatment of the ferroptosis model, Mito-Rh-S can accurately detect the fluctuation of mitochondrial HClO levels during ferroptosis in HCC.


Subject(s)
Carcinoma, Hepatocellular , Ferroptosis , Liver Neoplasms , Humans , Fluorescent Dyes , Liver Neoplasms/diagnostic imaging , Mitochondria , Hypochlorous Acid
2.
ACS Appl Mater Interfaces ; 16(17): 21699-21708, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38634764

ABSTRACT

Conventional photosensitizers (PSs) used in photodynamic therapy (PDT) have shown preliminary success; however, they are often associated with several limitations including potential dark toxicity in healthy tissues, limited efficacy under acidic and hypoxic conditions, suboptimal fluorescence imaging capabilities, and nonspecific targeting during treatment. In response to these challenges, we developed a heavy-atom-free PS, denoted as Cz-SB, by incorporating ethyl carbazole into a thiophene-fused BODIPY core. A comprehensive investigation into the photophysical properties of Cz-SB was conducted through a synergistic approach involving experimental and computational investigations. The enhancement of intersystem crossing (kISC) and fluorescence emission (kfl) rate constants was achieved through a donor-acceptor pair-mediated charge transfer mechanism. Consequently, Cz-SB demonstrated remarkable efficiency in generating reactive oxygen species (ROS) under acidic and low-oxygen conditions, making it particularly effective for hypoxic cancer PDT. Furthermore, Cz-SB exhibited good biocompatibility, fluorescence imaging capabilities, and a high degree of localization within the mitochondria of living cells. We posit that Cz-SB holds substantial prospects as a versatile PS with innovative molecular design, representing a potential "one-for-all" solution in the realm of cancer phototheranostics.


Subject(s)
Mitochondria , Optical Imaging , Photochemotherapy , Photosensitizing Agents , Reactive Oxygen Species , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Humans , Mitochondria/metabolism , Mitochondria/drug effects , Reactive Oxygen Species/metabolism , Boron Compounds/chemistry , Boron Compounds/pharmacology , Carbazoles/chemistry , Carbazoles/pharmacology , HeLa Cells , Thiophenes/chemistry , Thiophenes/pharmacology , Cell Line, Tumor
3.
Adv Mater ; : e2402806, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38552256

ABSTRACT

Cancer treatment requires precise tumor-specific targeting at specific sites that allows for high-resolution diagnostic imaging and long-term patient-tailorable cancer therapy; while, minimizing side effects largely arising from non-targetability. This can be realized by harnessing exogenous remote stimuli, such as tissue-penetrative ultrasound, magnetic field, light, and radiation, that enable local activation for cancer imaging and therapy in deep tumors. A myriad of nanomedicines can be efficiently activated when the energy of such remote stimuli can be transformed into another type of energy. This review discusses the remote control of energy transformation for targetable, efficient, and long-term cancer imaging and therapy. Such ultrasonic, magnetic, photonic, radiative, and radioactive energy can be transformed into mechanical, thermal, chemical, and radiative energy to enable a variety of cancer imaging and treatment modalities. The current review article describes multimodal energy transformation where a serial cascade or multiple types of energy transformation occur. This review includes not only mechanical, chemical, hyperthermia, and radiation therapy but also emerging thermoelectric, pyroelectric, and piezoelectric therapies for cancer treatment. It also illustrates ultrasound, magnetic resonance, fluorescence, computed tomography, photoluminescence, and photoacoustic imaging-guided cancer therapies. It highlights afterglow imaging that can eliminate autofluorescence for sustained signal emission after the excitation.

4.
Angew Chem Int Ed Engl ; 63(18): e202400249, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38372669

ABSTRACT

The cell membrane is a crucial component of cells, protecting their integrity and stability while facilitating signal transduction and information exchange. Therefore, disrupting its structure or impairing its functions can potentially cause irreversible cell damage. Presently, the tumor cell membrane is recognized as a promising therapeutic target for various treatment methods. Given the extensive research focused on cell membranes, it is both necessary and timely to discuss these developments, from materials design to specific biomedical applications. This review covers treatments based on functional materials targeting the cell membrane, ranging from well-known membrane-anchoring photodynamic therapy to recent lysosome-targeting chimaeras for protein degradation. The diverse therapeutic mechanisms are introduced in the following sections: membrane-anchoring phototherapy, self-assembly on the membrane, in situ biosynthesis on the membrane, and degradation of cell membrane proteins by chimeras. In each section, we outline the conceptual design or general structure derived from numerous studies, emphasizing representative examples to understand advancements and draw inspiration. Finally, we discuss some challenges and future directions in membrane-targeted therapy from our perspective. This review aims to engage multidisciplinary readers and encourage researchers in related fields to advance the fundamental theories and practical applications of membrane-targeting therapeutic agents.


Subject(s)
Membrane Proteins , Neoplasms , Humans , Cell Membrane/chemistry , Membrane Proteins/metabolism , Phototherapy , Neoplasms/metabolism
6.
Bioact Mater ; 34: 164-180, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38343773

ABSTRACT

Extracellular matrix (ECM) undergoes dynamic inflation that dynamically changes ligand nanospacing but has not been explored. Here we utilize ECM-mimicking photocontrolled supramolecular ligand-tunable Azo+ self-assembly composed of azobenzene derivatives (Azo+) stacked via cation-π interactions and stabilized with RGD ligand-bearing poly(acrylic acid). Near-infrared-upconverted-ultraviolet light induces cis-Azo+-mediated inflation that suppresses cation-π interactions, thereby inflating liganded self-assembly. This inflation increases nanospacing of "closely nanospaced" ligands from 1.8 nm to 2.6 nm and the surface area of liganded self-assembly that facilitate stem cell adhesion, mechanosensing, and differentiation both in vitro and in vivo, including the release of loaded molecules by destabilizing water bridges and hydrogen bonds between the Azo+ molecules and loaded molecules. Conversely, visible light induces trans-Azo+ formation that facilitates cation-π interactions, thereby deflating self-assembly with "closely nanospaced" ligands that inhibits stem cell adhesion, mechanosensing, and differentiation. In stark contrast, when ligand nanospacing increases from 8.7 nm to 12.2 nm via the inflation of self-assembly, the surface area of "distantly nanospaced" ligands increases, thereby suppressing stem cell adhesion, mechanosensing, and differentiation. Long-term in vivo stability of self-assembly via real-time tracking and upconversion are verified. This tuning of ligand nanospacing can unravel dynamic ligand-cell interactions for stem cell-regulated tissue regeneration.

7.
Angew Chem Int Ed Engl ; 63(9): e202317578, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38192016

ABSTRACT

Designing reactive calcium-based nanogenerators to produce excess calcium ions (Ca2+ ) in tumor cells is an attractive tumor treatment method. However, nanogenerators that introduce exogenous Ca2+ are either overactive incapable of on-demand release, or excessively inert incapable of an overload of calcium rapidly. Herein, inspired by inherently diverse Ca2+ -regulating channels, a photo-controlled Ca2+ nanomodulator that fully utilizes endogenous Ca2+ from dual sources was designed to achieve Ca2+ overload in tumor cells. Specifically, mesoporous silica nanoparticles were used to co-load bifunctional indocyanine green as a photodynamic/photothermal agent and a thermal-sensitive nitric oxide (NO) donor (BNN-6). Thereafter, they were coated with hyaluronic acid, which served as a tumor cell-targeting unit and a gatekeeper. Under near-infrared light irradiation, the Ca2+ nanomodulator can generate reactive oxygen species that stimulate the transient receptor potential ankyrin subtype 1 channel to realize Ca2+ influx from extracellular environments. Simultaneously, the converted heat can induce BNN-6 decomposition to generate NO, which would open the ryanodine receptor channel in the endoplasmic reticulum and allow stored Ca2+ to leak. Both in vitro and in vivo experiments demonstrated that the combination of photo-controlled Ca2+ influx and release could enable Ca2+ overload in the cytoplasm and efficiently inhibit tumor growth.


Subject(s)
Nanoparticles , Neoplasms , Humans , Calcium , Phototherapy , Neoplasms/drug therapy , Indocyanine Green , Endoplasmic Reticulum
8.
Angew Chem Int Ed Engl ; 63(9): e202316487, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38197735

ABSTRACT

The concept of molecular design, integrating diagnostic and therapeutic functions, aligns with the general trend of modern medical advancement. Herein, we rationally designed the smart molecule ER-ZS for endoplasmic reticulum (ER)-targeted diagnosis and treatment in cell and animal models by combining hemicyanine dyes with ER-targeted functional groups (p-toluenesulfonamide). Owing to its ability to target the ER with a highly specific response to viscosity, ER-ZS demonstrated substantial fluorescence turn-on only after binding to the ER, independent of other physiological environments. In addition, ER-ZS, being a small molecule, allows for the diagnosis of nonalcoholic fatty liver disease (NAFLD) via liver imaging based on high ER stress. Importantly, ER-ZS is a type I photosensitizer, producing O2 ⋅- and ⋅OH under light irradiation. Thus, after irradiating for a certain period, the photodynamic therapy inflicted severe oxidative damage to the ER of tumor cells in hypoxic (2 % O2 ) conditions and activated the unique pyroptosis pathway, demonstrating excellent antitumor capacity in xenograft tumor models. Hence, the proposed strategy will likely shed new light on integrating molecular optics for NAFLD diagnosis and cancer therapy.


Subject(s)
Carbocyanines , Neoplasms , Non-alcoholic Fatty Liver Disease , Photochemotherapy , Animals , Humans , Non-alcoholic Fatty Liver Disease/diagnostic imaging , Non-alcoholic Fatty Liver Disease/drug therapy , Pyroptosis , Coloring Agents/metabolism , Viscosity , Liver/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress , Neoplasms/pathology
9.
Angew Chem Int Ed Engl ; 63(2): e202312632, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-37849219

ABSTRACT

Photoacoustic (PA) imaging is emerging as one of the important non-invasive imaging techniques in biomedical research. Small molecule- second near-infrared window (NIR-II) PA dyes combined with imaging data can provide comprehensive and in-depth in vivo physiological and pathological information. However, the NIR-II PA dyes usually exhibit "always-on" properties due to the lack of a readily optically tunable group, which hinders the further applications in vivo. Herein, a novel class of dyes GX have been designed and synthesized as an activatable NIR-II PA platform, in which the absorption/emission wavelength of GX-5 extends up to 1082/1360 nm. Importantly, the GX dyes have a strong tissue penetration depth and high-resolution for the mouse vasculature structures in NIR-II PA 3D imaging and high signal-to-noise ratio in NIR-II fluorescence (FL) imaging. Furthermore, to demonstrate the applicability of GX dyes, the first NIR-II PA probe GX-5-CO activated by carbon monoxide (CO) was engineered and employed to reveal the enhancement of the CO levels in the hypertensive mice by high-contrast NIR-II PA and FL imaging. We expect that many derivatives of GX dyes will be developed to afford versatile NIR-II PA platforms for designing a wide variety activatable NIR-II PA probes as biomedical tools.


Subject(s)
Fluorescent Dyes , Photoacoustic Techniques , Mice , Animals , Fluorescent Dyes/chemistry , Spectrum Analysis , Optical Imaging/methods , Photoacoustic Techniques/methods
10.
Angew Chem Int Ed Engl ; 63(6): e202311764, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-37855139

ABSTRACT

Activatable fluorescent and chemiluminescent dyes with near-infrared emission have indispensable roles in the fields of bioimaging, molecular prodrugs, and phototheranostic agents. As one of the most popular fluorophore scaffolds, the dicyanomethylene-4H-pyran scaffold has been applied to fabricate a large number of versatile activatable optical dyes for analytes detection and diseases diagnosis and treatment by virtue of its high photostability, large Stokes shift, considerable two-photon absorption cross-section, and structural modifiability. This review discusses the molecular design strategies, recognition mechanisms, and both in vitro and in vivo bio-applications (especially for diagnosis and therapy of tumors) of activatable dicyanomethylene-4H-pyran dyes. The final section describes the current shortcomings and future development prospects of this topic.


Subject(s)
Fluorescent Dyes , Precision Medicine , Fluorescent Dyes/chemistry , Pyrans/chemistry , Spectroscopy, Near-Infrared/methods , Optical Imaging
11.
Article in English | MEDLINE | ID: mdl-38109299

ABSTRACT

Magnesium oxide (MgO) nanoparticles are commonly used to enhance the reactivity and performance of devices and systems in various applications, primarily due to the heat-resistance, binding, and alkaline properties of MgO. However, most of the methods used to synthesize MgO nanoparticles suffer from nonuniform particle size distributions that make it difficult to manufacture stable particles. In this study, uniform magnesium oxide (MgO) nanoparticles were developed for TiO2 photoelectrodes of dye-sensitized solar cells (DSSCs) to enhance their interfacial resistances. The uniform MgO nanoparticles were synthesized from MgO 93% using a poly(acrylic acid) template-assisted method. The particle size and crystalline structure of MgO nanoparticles were characterized by NANOPHOX particle size analysis, transmission electron microscopy, and X-ray diffraction. Multilayered TiO2 photoelectrodes containing interlayers of MgO nanoparticles were fabricated as photoelectrodes for DSSC devices, and their photovoltaic performances were investigated. When the MgO interlayer was introduced into the multilayered TiO2 photoelectrode, it not only increased the photocurrent value of the DSSC device but also improved its power conversion efficiency. The DSSC device containing the MgO interlayer and the scattering layer exhibited an open-circuit voltage of 0.74 V, a short-circuit current density of 14.60 mA/cm2, and a fill factor of 0.64 under a photointensity of 100 mW/cm2 at AM 1.5, resulting in an overall solar energy conversion efficiency of 6.94%. The application of an MgO interlayer in a DSSC device exhibited improved conductivity, charge transfer ability, and excellent device performance.

12.
Angew Chem Int Ed Engl ; 62(40): e202311543, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37602709

ABSTRACT

Excited-state intramolecular proton transfer (ESIPT)-based solid luminescent materials with multiple hydrogen bond acceptors (HBAs) remain unexplored. Herein, we introduced a family of Janus-type ESIPT chromophores featuring distinctive hydrogen bond (H-bond) selectivity between competitive HBAs in a single molecule. Our investigations showed that the central hydroxyl group preferentially forms intramolecular H-bonds with imines in imine-modified 2-hydroxyphenyl benzothiazole (HBT) chromophores but tethers the benzothiazole moiety in hydrazone-modified HBT chromophores. Imine-derived HBTs generally exhibit higher fluorescence efficiency, while hydrazone-derived HBTs show a reduced overlap between the absorption and fluorescence bands. Quantum chemical calculations unveiled the molecular origins of the biased intramolecular H-bonds and their impact on the ESIPT process. This Janus-type ESIPT chromophore skeleton provides new opportunities for the design of solid luminescent materials.

13.
Nat Mater ; 22(9): 1106-1113, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37537356

ABSTRACT

Non-collinear antiferromagnets are an emerging family of spintronic materials because they not only possess the general advantages of antiferromagnets but also enable more advanced functionalities. Recently, in an intriguing non-collinear antiferromagnet Mn3Sn, where the octupole moment is defined as the collective magnetic order parameter, spin-orbit torque (SOT) switching has been achieved in seemingly the same protocol as in ferromagnets. Nevertheless, it is fundamentally important to explore the unknown octupole moment dynamics and contrast it with the magnetization vector of ferromagnets. Here we report a handedness anomaly in the SOT-driven dynamics of Mn3Sn: when spin current is injected, the octupole moment rotates in the opposite direction to the individual moments, leading to a SOT switching polarity distinct from ferromagnets. By using second-harmonic and d.c. magnetometry, we track the SOT effect onto the octupole moment during its rotation and reveal that the handedness anomaly stems from the interactions between the injected spin and the unique chiral-spin structure of Mn3Sn. We further establish the torque balancing equation of the magnetic octupole moment and quantify the SOT efficiency. Our finding provides a guideline for understanding and implementing the electrical manipulation of non-collinear antiferromagnets, which in nature differs from the well-established collinear magnets.

14.
Chem Soc Rev ; 52(16): 5607-5651, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37485842

ABSTRACT

Since their inception, rhodamine dyes have been extensively applied in biotechnology as fluorescent markers or for the detection of biomolecules owing to their good optical physical properties. Accordingly, they have emerged as a powerful tool for the visualization of living systems. In addition to fluorescence bioimaging, the molecular design of rhodamine derivatives with disease therapeutic functions (e.g., cancer and bacterial infection) has recently attracted increased research attention, which is significantly important for the construction of molecular libraries for diagnostic and therapeutic integration. However, reviews focusing on integrated design strategies for rhodamine dye-based diagnosis and treatment and their wide application in disease treatment are extremely rare. In this review, first, a brief history of the development of rhodamine fluorescent dyes, the transformation of rhodamine fluorescent dyes from bioimaging to disease therapy, and the concept of optics-based diagnosis and treatment integration and its significance to human development are presented. Next, a systematic review of several excellent rhodamine-based derivatives for bioimaging, as well as for disease diagnosis and treatment, is presented. Finally, the challenges in practical integration of rhodamine-based diagnostic and treatment dyes and the future outlook of clinical translation are also discussed.

15.
ACS Appl Mater Interfaces ; 15(27): 32783-32791, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37366002

ABSTRACT

A cost-effective and environmentally friendly approach is proposed for producing N- and S-codoped multicolor-emission carbon dots (N- and S-codoped MCDs) at a mild reaction temperature (150 °C) and relatively short time (3 h). In this process, adenine sulfate acts as a novel precursor and doping agent, effectively reacting with other reagents such as citric acid, para-aminosalicylic acid, and ortho-phenylenediamine, even during solvent-free pyrolysis. The distinctive structures of reagents lead to the increased amount of graphitic nitrogen and sulfur doping in the N- and S-codoped MCDs. Notably, the obtained N- and S-codoped MCDs exhibit considerable fluorescence intensities, and their emission color can be adjusted from blue to yellow. The observed tunable photoluminescence can be attributed to variations in the surface state and the amount of N and S contents. Furthermore, due to the favorable optical properties, good water solubility and biocompatibility, and low cytotoxicity, these N- and S-codoped MCDs, especially green carbon dots, are successfully applied as fluorescent probes for bioimaging. The affordable and environmentally friendly synthesis method employed to create N- and S-codoped MCDs, combined with their remarkable optical properties, offers a promising avenue for their use in various fields, particularly in biomedical applications.


Subject(s)
Carbon , Quantum Dots , Carbon/chemistry , Nitrogen/chemistry , Sulfates , Quantum Dots/chemistry , Sulfur/chemistry
16.
Curr Opin Chem Biol ; 75: 102321, 2023 08.
Article in English | MEDLINE | ID: mdl-37196449

ABSTRACT

Metal ions are of significance in various pathological and physiological processes. As such, it is crucial to monitor their levels in organisms. Two-photon (TP) and near-infrared (NIR) fluorescence imaging has been utilized to monitor metal ions because of minimal background interference, deeper tissue depth penetration, lower tissue self-absorption, and reduced photodamage. In this review, we briefly summarize recent progress from 2020 to 2022 of TP/NIR organic fluorescent probes and inorganic sensors in the detection of metal ions. Additionally, we present an outlook for the development of TP/NIR probes for bio-imaging, diagnosis of diseases, imaging-guided therapy, and activatable phototherapy.


Subject(s)
Fluorescent Dyes , Metals , Ions , Optical Imaging
17.
Adv Healthc Mater ; 12(27): e2301022, 2023 10.
Article in English | MEDLINE | ID: mdl-37209386

ABSTRACT

Type I photosensitizers (PSs) are a promising approach for photodynamic therapy (PDT) since they can generate radicals that are tolerant to hypoxia. Thus, the development of highly efficient type I PSs is essential. Self-assembly is a promising strategy for developing novel PSs with desirable properties. Here, a simple and effective approach is developed to create heavy-atom-free PSs for PDT by self-assembling long-tailed boron dipyrromethene dyes (BODIPYs). The resulting aggregates BY-I16 and BY-I18 can efficiently convert their excited energy to the triplet state, producing reactive oxygen species that are essential for PDT. Furthermore, the aggregation and PDT performance can be regulated by adjusting the length of the tailed alkyl chains. As proof of concept, the efficacy of these heavy-atom-free PSs both in vitro and in vivo under both normoxic and hypoxic conditions is demonstrated.


Subject(s)
Photochemotherapy , Photosensitizing Agents , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Boron Compounds/pharmacology , Singlet Oxygen , Photochemotherapy/methods
18.
Chem Commun (Camb) ; 59(30): 4503-4506, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-36974924

ABSTRACT

A heavy-atom-free photosensitizer (CI) based on an imidazole-carbazole conjugate exhibited strong fluorescence emission and ROS generation via both type I and II mechanisms. In particular, CI showed efficient photodynamic therapy and fluorescence bioimaging under two-photon (TP) excitation (740 nm) toward HeLa cells with negligible dark toxicity.


Subject(s)
Photochemotherapy , Humans , Fluorescence , HeLa Cells , Photochemotherapy/methods , Carbazoles , Imidazoles
19.
Biomater Res ; 27(1): 23, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36945032

ABSTRACT

BACKGROUND: Malignant glioma is among the most lethal and frequently occurring brain tumors, and the average survival period is 15 months. Existing chemotherapy has low tolerance and low blood-brain barrier (BBB) permeability; therefore, the required drug dose cannot be accurately delivered to the tumor site, resulting in an insufficient drug effect. METHODS: Herein, we demonstrate a precision photodynamic tumor therapy using a photosensitizer (ZnPcS) capable of binding to albumin in situ, which can increase the permeability of the BBB and accurately target glioma. Albumin-binding ZnPcS was designed to pass through the BBB and bind to secreted protein acidic and rich in cysteine (SPARC), which is abundant in the glioma plasma membrane. RESULTS: When the upper part of a mouse brain was irradiated using a laser (0.2 W cm- 2) after transplantation of glioma and injection of ZnPcS, tumor growth was inhibited by approximately 83.6%, and the 50% survival rate of the treatment group increased by 14 days compared to the control group. In glioma with knockout SPARC, the amount of ZnPcS entering the glioma was reduced by 63.1%, indicating that it can target glioma through the SPARC pathway. CONCLUSION: This study showed that the use of albumin-binding photosensitizers is promising for the treatment of malignant gliomas.

20.
Angew Chem Int Ed Engl ; 62(15): e202301765, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-36786342

ABSTRACT

Photoswitchable materials have attracted considerable attention in various fields. Developing excellent solid-state dual-mode photoswitches is an important but challenging task. Herein, we propose a new strategy to construct an excited-state intramolecular proton transfer (ESIPT) inspired photoswitch (DiAH-pht) that possesses aggregation-induced emission (AIE) features and displays a fast molecular isomerization process characterized by dual-mode behavior in the solid state. Mechanistic studies indicate that introduction of a bulky group can create a folded molecular conformation that provides adequate volume to facilitate photoisomerization and the enhanced ESIPT effect can boost the isomerization process. The feasibility of our strategy was further demonstrated by the activated photoisomerization performance of the Schiff base derivatives. Furthermore, DiAH-pht shows good performance in the fields of dual-mode information encryption and high-density data storage.

SELECTION OF CITATIONS
SEARCH DETAIL
...